-__

PAL Session 1

Chapter 2: Basic Data Analysis - Summary Statistics and Graphs

> proponition die hy our probable Meaning of the Variables) -> lange -> Langer proposion sample g .D Ps= → smallen 2 $s = \underbrace{8 \cdot D}_{\overline{x}}$ population x = nondon variable > why naf **Formulas** Pe/PL Relative Risk (RR) = 0.2 > Attributable Risk (AR) = $P_L - P_S$ > Attributable Risk % (AR %) = $rac{AR \times 100}{P}$ Number Needed to Change (NNC) = 5 YAR > Coefficient of Variation (CV) = 00 z-geore 1

Fill in the Sign in sheet & Collect

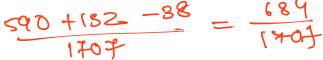
2 sheets of the

Basic and	Conditional	Probabilities
Bable and	<u>o o na ino na i</u>	

SI PAL – Session #3

worksheed

							_
\checkmark		Minor	Severe	Minor Joint	Severe Joint	Total	\sim
		Fracture	Fracture				
	Male Athlete	147	52	74	291	564	< (
	Male Non-Athlete	141	38	39	372	(590')	e
	Female Athlete	72	12	(29)	102	25	< /
	Female Non-	183	30	8	117		
	Athlete					335	
	Total 🗕	a 543	132	150	882	1707	ϵ


1. P (The person is a Male Athlete)

2. P (The person is a Male)

3. P (Female Athlete ∩ Minor Joint)

4. P (Male Non-Athlete U Severe Fracture)

5

5. P (Female Non-Athlete ∩ Severe Joint)

male Ashalete give Sevenue fractures 6. P (Male Athlete | Severe Fracture) \Rightarrow

$$\Rightarrow \frac{52}{132}$$

7. P (Minor Fracture | Female Non-Athlete

- 8. P (Male Non-Athlete | Minor Joint)
- 9. P (Male Athlete U Male Non-Athlete | Severe Joint)

10. P (Male | Joint)

1082

Baye's Problem

Example 1

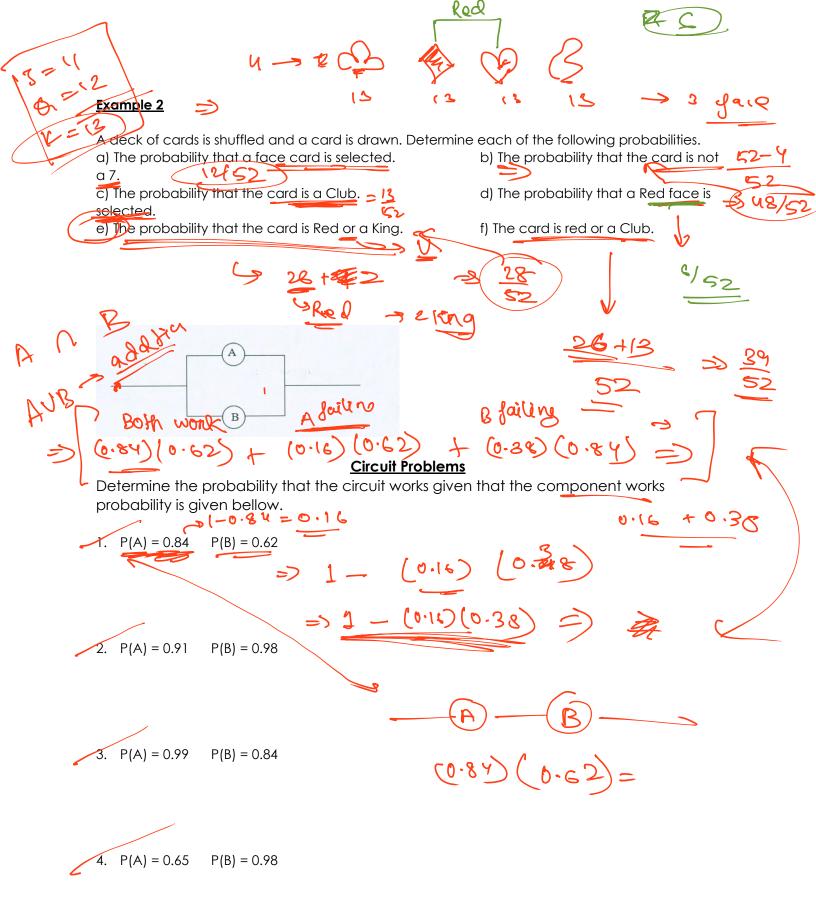
a) Fill in the table using the information below

- Suppose that a known disease occurs in 2% of the population
- The medical test produces a positive reading on <u>99.5% of</u> those infected with the disease
- Suppose that this test gives a positive result in healthy patients 2% of the time
- Assume we have 100,000 random individuals who follow the above information perfectly
- •

	Has Disease	Does Not Have	Total
		Disease	
Test Positive	- 199D	(960	مال
Test Negative	D	9640	
Total	2000	98090	100,000

1990 + 196 D

Determine P (Have the Disease | Tested Positive)


C/ Determine P (Have the Disease | Tested Negative)

Example 2

Two dice (one red and one green) are to be rolled. The sample space consists of the 36 outcomes listed below. The first number is what is rolled on the Red die and the second number is what is rolled on the Green. Determine:

$$I_{1} I_{1} I_{2} I_{3} I_{4} I_{5} I_{6} I_{6} I_{6} I_{6} I_{2} I_{2} I_{2} I_{2} I_{3} I_{2} I_{4} I_{2} I_{5} I_{6} I_{6$$

≥ ³/36

